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1. I N T R O D U C T I O N  

Consider a suspension of particles of density PD in an interstitial fluid of density Pc. Let PD > PC, 
i.e. the particles are "heavy" and settle to the bottom in a gravity field (the subscripts C and D 
denote the continuous and dispersed "phases"). The bulk (or averaged) density is 
p = EpD + (1 -- E)pc, where E is the volume fraction of the dispersed "phase", in general a function 
of  space and time. 

It is generally accepted--and consistent with experiments--that in stable situations the suspen- 
sion can be treated as a regular single-phase fluid of density p, provided that E is not exceedingly 
small, so that the number of particles in the system is large and the interparticle distance is much 
smaller than the dimensions of the container (Ungarish 1993). 

Huppert  et  al. (1991) carried over that postulate about p to stability considerations. For the 
sake of explanation, this extension can be cast in the following way: suppose that a layer of 
suspension of  bulky density p is overlain by a layer of fluid of density Pu in a gravity field; if 
Pu ~< P the suspension domain is stable, and behaves as though the overlaying fluid does not 
exist. There is actually nothing special about this argument as long as the density of  the interstitial 
fluid, Pc, is larger than Pu. However, Huppert  et  al. used this criterion for cases with Pc < Pu, and 
found good agreement with experiments. Additional confirmation was provided by Kerr & Lister 
(1992). 

The underlying mechanism of the criterion and results of  Huppert et  al. is not evident. It is the 
purpose of  this note to raise some pertinent questions and to suggest some possible explanations. 
This topic is worthy of  investigation because: (a) it is related with the fundamental problem of the 
relevance of  the bulk (averaged) properties of a suspension, and (b) the type of problems analysed 
by Huppert  et  al. are important in geophysical applications. 

To give quantitative support to the discussion we perform some simple calculations with the 
typical parameters of the apparatus of Huppert et  al. with "type 2" particles of radius a = 12.5 btm 
and: Pc = 1.000 gcm -3, Pu = 1.070 gcm -3, PD = 3.22 gcm -3, viscosity v = 0.01 cm 2 s -1 (for all 
fluids), and zero surface tension. We shall use different values of E as specified later, in the range 
of  several percent. The section of  the settling tank was 3 x 19.5 cm 2, the settling length was 20 cm, 
and the settling time was several min. 

2. ANALYSIS  

2.1. The  case  p > PtJ 

- 2.1. I. The  suspens ion  domain .  There is nothing special in the stability considerations when 
Pu < Pc. The settling particles, initially at z = z0, leave behind a region of pure fluid, where E = 0 
and the density is Pc, of increasing thickness 
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2"F(t ) - -  Z 0 = h(E)VStokes t. [1] 

Here t is time, z is the coordinate in downward vertical direction, h(E) ~ (1 --E) 5 is the hindrance 
function, VS~okes ---- (2/9)a2(pD --Pc)g/Pc v is the classic settling velocity of the particle of radius a in 
the pure interstitial fluid whose viscosity is v, and the subscript F denotes the particle-pure fluid 
interface ("Front") .  Since the density of  the pure fluid in the domain z0 < z < zF(t) is larger than 
that of the overlaying fluid above z0 the usual instability modes are bound to decay. 

On the other hand, when Pu > Pc the interface z = z0 is inherently unstable, and we expect that 
the layers of  fluid will quickly change places. This expectation is consistent with the experiments. 
However, the amazing thing is that the abovementioned instability mixing does not penetrate into 
the suspension fluid below the interface z = ZF provided that p > Pu [i.e. (Po - Pc) and E are so 
big that their product exceeds the difference (Pu -Pc ) ] -  The experimental occurrence of this 
surprising stability of the interface z = zv(t) and of  the region below it, as opposed to the unstable 
convection above zv(t), was clearly reported by Huppert et al.: "a very sharp interface separated 
the convective region from an underlying sedimenting r e g i o n . . . "  and "the process of sedimen- 
tation in the lower layer is largely independent of  the motion in the upper layer". 

The dilemma comes from the fact that at the interface z = ZF the lighter interstitial fluid is 
essentially overlain by the heavier fluid, as illustrated in figure 1. So, why is this interface stable? 
Actually, this question is relevant to the entire suspension below zv because if the upper heavy fluid, 
U, starts replacing the light continuous fluid, C, below zv this process is bound to propagate into 
the entire domain of  unsettled suspension. 

We suggest that this enhanced stability feature is a consequence of both the presence of the 
particles in the suspension and of their motion relative to the embedding fluid. First, these particles 
introduce a new length-scale, the interparticle distance e, and therefore cut off the usual instability 
modes for wavelengths larger than e. To verify this hypothesis we perform some simple calculations. 

The interparticle distance can be estimated as (Ungarish 1993, section 2.2) 

e = 2.0a~ t/3. [2] 

When the fluid C is overlain by heavier fluid U all perturbation modes are unstable, so the more 
relevant information concerns the wavelength of maximal growth, )~mg, and, for a given 2, the 
exponent coefficient of growth, n (Chandrasekhar 1955); see figure 2. 

Pc 
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Figure  1. En la rgemen t  of  the suspens ion  pure  fluid interface region when  Pu > Pc. zv is measu red  f rom 
the top wall, and  zv(O)= z o. 
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Figure 2. Viscous mode, n vs )~, for semi-infinite layers p c = l . 0 0 0 g c m  -3, P u = l . 0 7 0 g c m  -3, 
v =0.01 cm2s -~. 

Indeed, in the abovementioned experiments ~'mg was  much smaller than the dimensions 
of the container but larger by factors of at least 10 than e. To be more specific, we take 

=0.04 (in which case the suspension density is p = E p o + ( 1 - e ) p c =  1.089). We obtain: 
e = 0.0073 c m ,  J-ms --- 0.17 cm, r/ms = 22 s- ' .  On the other hand, the viscous mode with 
2 = e = 0.0073 cm corresponds to n = 2 s- ' .  

Evidently, the development of the unstable modes driven by the density difference (Pu - Pc) is 
drastically hindered by the interparticle length scale, e. 

However, the viscous mode with 2 = e still grows with the exponential coefficient n = 2 s- '  and 
is potentially effective on the experiment time duration of several minutes. We suggest that, 
nevertheless, this instability may be insignificant because of the fall of the particles--hence of the 
interface--relative to the fluid. The perturbation in the fluid is expected to behave like 

A e x p [ - ( z -  z0)-~ + n t ]  [3] 

and for estimating what perturbation is encountered by the moving interface we have to substitute 
z = zv(t), see [1]. We get 

A e x p [ - t / r  + nt], ( l /r)  = 2nVstokes/2. [4] 

The relevant parameter is l/r, i.e. the relative rate of escape of the particle from the zone affected 
by the instability wave (to be more accurate, a hindrance function h(Q/(l - E) must multiply Vstokes 
in the definition). We argue that tf  this parameter is larger than n the particle interface moves into 
quiescent fluid faster than the instability, therefore, this interference will not display the unstable 
behavior estimated at z = z0. Indeed, in the experiment with the abovementioned data ( l /r)  was 
63 s -1, considerably larger than n. 

2.1.2. The layer of pure fluid. After the particles move away from z0 as described abvove, the 
left behind pure fluid of density Pc may eventually pick up instability modes with ;t > e, therefore, 
it will be quickly replaced with the upper fluid of density Pu. The actual quite complicated 
three-layer system--a thin buoyant layer of fluid C with fluid U above and with suspension 
below--may contain a wealth of instability effects, see Craik & Adam (1979) and Lister & Kerr 
(1989), which are not pursued here. We are mainly interested in estimating the maximal thickness, 
dm~, that the layer of pure fluid may attain before it is destroyed by instability. 
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The considerations of  Kerr & Lister (1992), based on viscous fluid results valid for short wave 
instability modes (2 << ~'rng ) indicate that dmax "" [B (PD -- PC)/(Pu -- PC)] ~/2a, where B is a constant, say 
10. For the present case this gives dmax ~ 0.02 cm, which is formed in t~ ~ 0.3 s. This can be 
considered the lower bound for this effect, as verified below. 

For estimating the upper bound of dm,x we consider the inviscid long waves instability modes, 
2 ~ (dimension of container). According to the foregoing arguments, these modes are drastically 
cut off in the mixture domain. Hence the lower mixture layer can be considered a solid wall 
boundary for the long waves, so that the two-layer system bounded from below is a reasonable 
approximation for estimation of dmax- Instantaneously, the upper layer of  fluid U is thick and 
practically unbounded. Below it the thickness d of  the layer of  pure fluid C is rather small, at least 
at initial time. 

The instantaneous value of d does not influence the onset of  the instability, but the rate of 
growth is 

Pu + Pc coth(21rd/2)] ' Pu 7PccgJ  ' 
[5] 

so that for very small d/2 a reduction of  approximately 2 . ~  x / ~  occurs as compared with the 
unbounded from below (d = m) case. 

Consider the development from d = 0. In lack of disturbances the layer of  pure fluid grows with 
constant velocity ~ Vs,okes. First, when the layer is very thin, the disturbances on the interface 
between fluids C and U grow slower than d but eventually a balance is achieved. Further increase 
of  d causes the layer to be destroyed (convected upwards) and replaced by fluid U. Then a new 
"cycle" begins. 

An instability wave of wavelength 2 strongly destabilizes--and probably des t roys--a  layer of  
given d in a period t2 ,~ B/n(d, 2). The requirement t2 = tj = d/Vstokes yields: 

dm"x=L~--~vag/I- B 1 3,2 12PD--Pc(PU+p__c -~u~Pc/PC~m12/3"(a22)'/3"A [6] 

For our system, taking B = 10 and 2 = 19.5 cm (the largest dimension of the container's cross 
section) we get dmax = 0.44 cm and t~ = 6 s. Shorter 2 give smaller dm~x and tt, but when 2 approaches 
2ms = 0.17 cm the inviscid analysis becomes invalid. (As a speculation, however, we substituted 
2 = 0.17 cm in [6] and obtained dm,x = 0.02 cm and tl = 0.3 s.) 

We conclude that the pure fluid layer left behind the settling particles can reach at most the 
thickness of  several millimeters during a transient process of  formation and destruction whose 
cycles take at most several seconds each. Such a thin and unsteady layer is apparently beyond the 
resolution of  the referred experiments, which may explain why it has not been documented. 

2.2. The case p < Pu 
Next we ask a more difficult question: why does the interface become unstable when the bulk 

density of  the mixture below it, p = EpD + (1 --C)pc, is smaller than Pu. Again, this feature is 
supported by experiments (although the details are less clear-cut than before). Here we can 
presently suggest only a rough qualitative hypothesis: if the wavelength of the maximal growth 
instability driven by (Pu - P) is much larger than the interparticle distance, e, and the correspond- 
ing rate of  growth coefficient is larger than the relative rate of  escape of the particles, (l/z),  then 
the "micro"  distinction between interstitial fluid and suspended particles is not relevant to 
instability development. 

For example, a suspension of  the abovementioned components but with E = 0.022 has p = 1.049, 
smaller than Pu = 1.070. In corresponding single phase fluids of  equal viscosity, the value 
(Pu - P)/(Pu + P) = 0.01 drives an instability with 2m~ = 0.26 cm, nm~ = 9.5 s -~. Since 2ms/e = 29 
and nm~/(1/'c)= 5.3 we can argue that the maximal growth modes "sees" the suspension as a 
uniform bulk of density p.5" In this example Pu was larger than p by 2%. As the density difference 
d e c r e a s e s  )'m~ increases but nmg decreases, and vice versa. It is, therefore, difficult to speculate for  

tThc ratio nmsl(llT ) can be considered marginal. Actually, in most of the experiments smaller particles were used, which 
reduces both e and (l/T) and makes the bulk properties argument more convincing. 
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which value of the density difference parameter this bulk consideration becomes invalid and by 
which criterion it should be replaced. Our attempts to contrive a simple-for-experiments system of 
overlain suspension that clearly violates that bulk hypothesis [i.e. with both 2mJe and nm/(1/x) 
smaller than 1 while p < Pu] were disappointing. The encountered difficulty is that in such a system 
the particles are big and fall with large velocity therefore must be followed on long settling distances 
unless the interstitial fluid is very viscous. 

3. CONCLUDING REMARKS 

In a typical suspension of particles of density PD in a continuous fluid of density Pc overlain by 
a heavy fluid of density Pu, when Pu > Pc the instabilty modes corresponding to the difference 
(Pu - P c )  at the interface are strongly restricted by the small interparticle distance, e ~ 2aE-i/3, of 
the order of magnitude of 0.1 mm. The particles settle away from the perturbed interface region 
before these short and slow waves that form between the particles attain a big amplitude. The 
thickening pure fluid layer left behind the particles is restricted only by the wall of the large 
container and may pick up instability waves whose rate of growth increases with the thickness of 
this layer. Before this thickness reaches several millimeters the instabilities become so fast that the 
pure fluid in this layer is practically convected upwards, while heavy fluid replaces it. Averaging 
over these quick cycles, the suspension appears in contact with the fluid of density Pu. 

If  the bulk suspension density, p, is larger than Pu the interface particles move into a quiescent 
domain, therefore the interface and the suspension below it look stable. If p < Pu long and fast 
instability waves driven by the difference ( P u -  P) are possible. On the length and time scales of 
these perturbations the suspension is "seen" as a bulk of uniform density and velocity. 

Since the interparticle distance is proportional to E -1/3 even quite dilute suspensions (say, 
E = 10 -4) are consistent with these considerations. This increases the confidence in applying the 
averaged continuum formulation in the analysis of non-concentrated suspensions, from an unusual 
angle of view. (The ususal justification is the large number of particles in the system, but this cannot 
be directly used in answering the questions discussed here.) 

The term "typical suspension" is of course problematic, but we must use it because although 
theoretically the abovementioned features are not necessary we could not contrive an easy-for- 
experiment case that is expected to behave differently. 
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